TABLE OF CONTENTS

Page

1. INTRODUCTION 3
2. SAFETY INSTRUCTIONS 5
3. SYSTEM DESCRIPTIONS 6
3.1 TRANSMITTER OUTLINE
3.1.1 TRANSMITTER EXTERNAL DESCRIPTIONS 6
3.1.2 TRANSMITTER INTERNAL DESCRIPTIONS. 7
3.1.3 RECHARGEABLE BATTERY, BATTERY CHARGER AND SHOULDER BELT VIEWS 7
3.2 RECEIVER OUTLINE
3.2.1 RECEIVER EXTERNAL DESCRIPTIONS 8
3.2.2 RECEIVER INTERNAL DESCRIPTIONS 8
3.2.3 RECEIVER MOUNTING DIMENSION. 9
3.2.4 CARDS INSIDE RECEIVER 9
4. SYSTEM FUNCTIONS
4.1 TRANSMITTER JOYSTICK DESCRIPTIONS 13
4.2 JOYSTICK CONFIGURATIONS AND SETTINGS 24
4.3 TRANSMITTER PUSHBUTTON DESCRIPTIONS 25
4.3.1 PUSHBUTTON TYPES 25
4.3.2 FUNCTION SETTINGS 27
4.3.2.1 TRANSMITTER FUNCTION SETTINGS 28
4.3.2.2 RECEIVER FUNCTION SETTINGS. 30
4.4 SPECIAL TYPES 34
4.5 CUSTOMIZED TYPES. 36
4.6 FREQUENCY TABLE 37
5. SYSTEM SETTINGS
5.1 TRANSMIITTER LCD FUNCTION SETTINGS. 39
5.2 LCD DISPLAY DESCRIPTIONS 39
6. RECEIVER STATUS LIGHT AND INSTALLATION
6.1 RECEIVER STATUS LIGHT. 44
6.2 RECEIVER LED STATUS. 44
6.3 PREPARATION. 46
6.4 STEPS-BY-STEPS INSTALLATION 46
6.5 WIRING DIAGRAM 47
6.6 SYSTEM TESTING. 47
7. TRANSMITTER OPERATING INSTRUCTION
7.1 POWER "ON" THE SYSTEM 47
7.2 TRANSMITTER SYSTEM STATUS DISPLAY 48
7.2.1 TRANSMITTER LED DISPLAY 48
7.2.2 TRANSMITTER LED STATUS TABLE 48
7.3 JOYSTICK CORRECTION
7.3.1 REASONS FOR JOYSTICK CORRECTION. 49
7.3.2 ENTER JOYSTICK CORRECTION MODE. 49
7.3.3 JOYSTICK CORRECTION STEPS 50
7.3.4 EXIT 50
7.3.5 FUNCTION CHANGE SETTINGS 51
8. BATTERY CHARGING 53
9. TROUBLE SHOOTING 54
10. SYSTEM SPECIFICATION 55
11. PARTS LIST 57

1. INTRODUCTION

The Alpha 6000 is a highly sophisticated industrial radio remote control system. The versatile features of Alpha 6000 permits its usage in a wide range of industrial applications. The system can be used to control all types of industrial cranes, tower cranes, building construction equipment, automatic control systems, mining equipment, and many others.

The Alpha 6000 incorporates numerous advanced safety features and software programming that will ensure maximum security and safety in the workplace. The major features of Alpha 6000 industrial radio remote control system are as follow:

* The system is equipped with highly evolved software that has redundant error checking and correcting capabilities to ensure 100% error-free transmission, decoding, and control of all output relays. This highly evolved software includes CRC (Cyclical Redundancy Check) and Hamming Codes (Error Recovery) programming. The responding time from system error to receiver auto-shutdown is maximum 1 second.
* The encoding system utilizes advanced microprocessor control for 100% error-free data transmission. The availability of 65,536 sets of unique security ID codes +68 distinct RF channels will ensure that only commands from a matching control transmitter can be carried out without any interference from other radio systems.
* The decoding system utilizes dual-microprocessor control, which will ensure 100% error-free calculating, bit checking and correcting of all incoming data.
* The system also utilizes an additional central microprocessor for data comparison and crosschecking between the two decoding microprocessors. When faults are detected via this central microprocessor, for maximum safety, the entire system will be shutdown immediately to avoid possibility of any accidents occurring.
* The system utilizes PLL synthesized RF transmission. It allows the user to select from 68 sets of frequency channels best suited for the environment. The frequency channel for transmitter and receiver is selected via programming software. The receiver also has the ability to auto-scan from these 68 sets of frequency channels. The receiver will search and locked on to the intended matching control transmitter.
* For added safety the receiver also utilizes dual Safety Relays for the receiver MAIN relay circuit. If the receiver MAIN relay is defective (example: fails to open or close during operation or not respond to a "Stop" command) a fault will be detected and the system will be shut down immediately to avoid possibility of any accidents occurring.
* The Alpha 6000 is equipped with numerous self-diagnosing functions, which include transmitter low-voltage detection/warning, faulty pushbutton/joystick detection, faulty safety MAIN relays detection, faulty relay boards detection, faulty EEPROM detection, faulty RX module detection, incorrect ID code detection, and receiver MAIN auto-deactivation when transmitter low-voltage is detected, when encountering strong radio interference, and when the transmitter/operator is out of receiving range.
* The transmitter is equipped with power auto shutdown function: After 5 minutes of inactivity, that is 5 minutes after the last pushbutton is released, the transmitter power will shut off
automatically. (0-120 minutes or no auto shutdown is selectable)
* The transmitter casing is composed of special engineering plastic and pushbutton waterproof layer. The engineering plastic is featured with wearable, oil-proof, acid-proof, alkaline-proof, high temperature resistance, anti-UV, water-proof and dust-proof. With the self-developed no contact cross type and single axis joystick, there is no disadvantage of friction and non-durability as the operation of direct contact. The operation life and reliability is for a minimum of 1 million operating cycles.
* The receiver enclosure is composed of 100% aluminum alloy. It may eliminate the static completely and avoid interference from radio radiation.
* Relay and proportional joystick output via RS485 interface (optional). It is also applicable on internet type control.
* Receiver internal circuit is completely modularized. Including: receiving RF module, decoding module, relay module, proportional output module, LCD display module and power module. It is easy for the users to replace and extend.
* LCD display module shows the current receiver status, including individual relay output, proportional output, receiving signal strength, error messages...etc.
* Maximum number of joysticks and pushbuttons on each transmitter:

1. 2 double axes joysticks plus 16 single speed pushbuttons
2. 8 single axis joysticks plus 12 single speed pushbuttons
3. If there is no joystick on the transmitter, maximum 32 single speed pushbuttons can be installed on each transmitter.

* Relay and proportional output:

1. Maximum 32 relays. 8 pcs relays on each relay interface card, maximum 4 relay interface cards.
2. Proportional output interface cards available:

Standard: By voltage/current: $0 \sim+5 \mathrm{~V}, 0 \sim+10 \mathrm{~V}, 0 \sim \pm 5 \mathrm{~V}, 0 \sim \pm 10 \mathrm{~V}, 4 \sim 20 \mathrm{~mA}, 0 \sim 20 \mathrm{~mA}$ \& $0 \sim 24 \mathrm{~mA}$ Customized: Customized proportional output interface card (optional).

* All Alpha 6000 function setting and selection can be done via Alpha 6000 software.

2. SAFETY INSTRUCTIONS

The Alpha 6000 system is relatively simple to use. However, it is very important to observe the proper safety procedures before, during, and after operation. When using properly the Alpha 6000 systems will enhance productivity and efficiency in the workplace.

The following instructions should be strictly followed:

1. Make a daily check of the transmitter casing, joysticks and pushbuttons. Should it appear that anything could inhibit the proper operation of the transmitter unit, it should be immediately removed from service.
2. The transmitter voltage should be checked on a daily basis. If the voltage is low, the battery pack should be recharged or replaced (refer to page 45 for battery power status LED display).
3. The emergency stop button (EMS) should be checked at the beginning of each shift to ensure they are in the proper working order.
4. In the event of an emergency, activate the emergency stop button immediately by pressing the red EMS button down. This will immediately disconnect the transmitter power and receiver MAIN relays. Then turn the power "off" from the main power source of the equipment.
5. The transmitter power key, which is located on the right side of the transmitter box, should be turned "off" after each use and should never leave the power key in "on" position when the unit is unattended.
6. Do not use the same frequency channel and ID code as any other unit in use at the same facility or within distance of 300 meters to avoid interference.
7. Ensure the waist belt and the shoulder strap is worn at all time during operation to avoid accidental damages to the transmitter box.
8. Never operate a crane or equipment with two (2) transmitter units at the same time with same frequency channel and ID code.

3. SYSTEM DESCRIPTIONS

3.1 Transmitter Outline

3.1.1Transmitter External Descriptions

$268 \mathrm{~mm} \times 162 \mathrm{~mm} \times 178.5 \mathrm{~mm}$

(Fig. 1) Transmitter Top \& Bottom View

1. Battery Power LED Display
2. Status LED Display
3. Information Top Plate (engraved)
4. Joystick Rubber Boot
5. Joystick Rubber Boot
6. START Pushbutton
7. AUX/RES Pushbutton (side panel)
8. AUX/RES Pushbutton (side panel)
9. AUX/RES Pushbutton (top panel)

10 Emergency Stop Button (EMS)
11. Power Key (detachable)
12. Battery Contact (gold-plated)
13. System Information
14. Battery Slot

(Fig. 2) Transmitter Exterior Views

3.1.2 Transmitter Internal Descriptions

(Fig. 3) RF Module, Encoder Board and Power Switch Views

1. Buzzer
2. Encoder Anti-Magnetic Shielding Plate
3. Ribbon Type Connector Port
4. Power Fuse (0.5A)
5. A/G Sensor Ribbon Type Connector Port
6. Power Key Switch Connector Port
7. External Programming Port
8. Function Setting Dip-Switch (incl. joystick correction)
9. TX Module Connector Dip-Switch
10. Power Input Connector Port
11. Antenna Port
12. TX module Connector
13. A/G Sensor Ribbon Type Connector
14. External Programming Port
15. Power Key Switch Ribbon Type Connector
16. Power Key Switch

(Fig. 4) Encoder Board, TX Module and A/G Sensor Views

3.1.3 Rechargeable Battery, Battery Charger and Shoulder Belt Views

(Fig. 5) Rechargeable battery , Battery Charger , Shoulder Belt Views

5 RECEIVER OUTLINE

3.2 Receiver Outline

3.2.1 Receiver External Descriptions

$300 \mathrm{~mm} \times 171 \mathrm{~mm} \times 115 \mathrm{~mm}$
(excluding antenna and plug-in connector)

(Fig. 6) Receiver External Descriptions

3.2.2 Receiver Internal Descriptions

1. Antenna
2. Antenna Port
3. AC Power Display
4. SQ Status Display
5. Status Display
6. Main Relay Display
7. System Information Plate
8. Shock Absorber*4
9. Cable Gland*2
10. RX Module Card
11. Output relay Card I
12. Output relay Card II
13. Output relay Card III
14. Output relay Card IV
15. Decoder Module Card
16. LCD Display
17. Proportional Output Module Card
18. Power Module Card

(Fig. 7) Receiver External/Internal Descriptions

3.2.3 Receiver Mounting Dimension

3.2.4 Cards inside Receiver

(Fig. 8) Cards inside Receiver
(1) RX Module Card

(Fig. 9) RX Module Card

1. RX Module Card Release Clip
2. RX-1 Antenna Port

3 Receiver MAIN Relay LED Display
4. Receiver Status LED Display
5. Receiver SQ Status LED Display
6. Receiver Power LED Display
7. RX Module Golden Finger Slot
8. RX Module Anti-Magnetic

(2) Decoder Card

1. Decoder Card Anti-magnetic Shielding Plate
2. SICK LASER Input Contact CN13
3. SICK LASER Input Contact CN14
4. SICK LASER Contact Power
5. Relay Power(COM) LED Display
6. MAIN Relay Status LED Display
7. "Proportional Output Module" Connecting Port
8. DC12V Power Input
9. Spare DC12V Power Output
10. MAIN Relay 1 Fuse F3 250V/5A
11. MAIN Relay Contact
12. MAIN Relay 2 Fuse F5 250V/5A
13. Relay Module Card Golden Finger Slot IV(K25~K32)
14. Relay Module Card Golden Finger Slot III(K17~K24)
15. Relay Module Card Golden Finger Slot II(K09~K16)
16. Relay Module Card Golden Finger Slot I (K01~K08)
17. RX Module Golden Finger Slot
18. External Extension Contact
19. Decoder Card Power LED Display
20. Status LED Display
21. Programming Port

(3) Relay Card

1. Relay LED Display Pole

(Fig. 11) Relay Card

(Fig. 12) Power Supply Module

(5) LCD Display

1. LCD Screen
2. Input / Output connecting Port
3. Pushbutton 1
4. Pushbutton 2
5. Pushbutton 3
6. Joystick 8/VR8 Output Status LED
7. Joystick 7/VR7 Output Status LED
8. Joystick 6/VR6 Output Status LED
9. Joystick 5/VR5 Output Status LED
10. Joystick 4/VR4 Output Status LED
11. Joystick 3/VR3 Output Status LED
12. Joystick 2/VR2 Output Status LED
13. Joystick 1/VR1 Output Status LED

(Fig. 13) LCD Display

Joystick 1/VR1 ~ joystick 8/VR8 output status LED: Each joystick/VR is equipped with one red/green dual color output status LED. Both red and green status LED will not ON when there is no output from joystick. When the joystick output does not reach to the highest point, green status LED blinks. The lower the joystick output, the slower the green LED blinks. The higher the joystick output, the faster the green LED blinks. When the output reaches to the highest point, green LED OFF and red LED steady ON.
(6) Voltage/Current Proportional Output Module

1. Status LED
2. "LCD Display" Connector
3. RESET Status LED
4. External Power Input
5. Joystick/VR Output Voltage \& Current Setting JUMPER
6. Joystick 5/VR5 ~ Joystick 8/VR8 Voltage \& Current Output
7. Joystick 1/VR1 ~ Joystick 4/VR4 Voltage \& Current output
8. RS485 Output Interface (optional)
9. RS485 Terminal Resistance Setting JUMPER
10.Proportional Output Module Card
11.Output Module to Decoder Card Connecting Port

(Fig. 14) Voltage/current proportional output module

(1) ~ (8) Corresponding joystick 1/VR1 ~ joystick 8/VR8

* Plug short pin into the 3-pin JUMPER left ("I" mark): Select "current" output and plug short pin into the 3-pin JUMPER right ("V" mark): Select "voltage" output。

Current output: Software setting ($0 \sim 20 \mathrm{~mA}, ~ 0 \sim 24 \mathrm{~mA} \& 4 \sim 20 \mathrm{~mA}$ available) and plug the short pin into the 3-pin JUMPER left.("I" mark)
Voltage output: Software setting ($0 \sim+5 \mathrm{~V}, ~ 0 \sim+10 \mathrm{~V}, ~ 0 \sim \pm 5 \mathrm{~V} \& 0 \sim \pm 10 \mathrm{~V}$ available) and plug the short pin into the 3-pin JUMPER right.("V" mark)

* Each joystick/VR corresponds to the 2-pin output terminal. Left terminal is for voltage/current output and right terminal is for GND.
(9) RS485 output terminal with 150Ω resistance. Plug in short pin: Use terminal resistance; not using short pin: Not using terminal resistance.
(10) RS485 output

4. SYSTEM FUNCTIONS

4.1 Transmitter Joystick Descriptions

Joystick types can be customized by the demand per different customer. The available ones are described as below:

$\underset{\text { TYPE }}{\overline{\text { JOYSTICK }}}$	DESCRIPTION
Proportional joystick	Double axes joystick Neutral angle range $0^{\circ} \pm 5^{\circ}$, max. motion angle $\pm 40^{\circ}$ Joystick Up/Left axis $+6^{\circ} \sim+40^{\circ}$ for $0 \sim+$ MAX proportional output. (127 steps resolution) Joystick Down/Right axis $-6^{\circ} \sim-40^{\circ}$ for $0 \sim+$ MAX or 0~-MAX proportional output. (127 steps resolution) Single axis joystick Neutral angle range $0^{\circ} \pm 3^{\circ}$, max. motion angle $\pm 35^{\circ}$ Joystick Up axis $+4^{\circ} \sim+35^{\circ}$ for $0 \sim+$ MAX proportional output. (127 steps resolution) Joystick Down axis $-4^{\circ} \sim-35^{\circ}$ for $0 \sim+$ MAX or 0~-MAX proportional output. (127 steps resolution) * Move joystick to any angle and release, joystick will auto return to neutral position. * Back to zero checking after transmitter joystick startup.
Single-side type VR(\#)	* 0° on the start position of the rotary switch left. Rotating clock-wisely $0^{\circ} \sim 240^{\circ}$ for $0 \sim+$ MAX proportional output (255 steps resolution) * Rotate switch to any angle and release, rotary switch will remain at that angle and will not auto return to 0°. * Pre-set transmitter startup as not having back to zero check. * Proportional output available: Interface card with voltage/current proportional output: $0 \sim+5 \mathrm{~V} / 0 \sim+10 \mathrm{~V} /$ $4 \sim 20 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 0 \sim 24 \mathrm{~mA}$ (not-selectable: $0 \sim \pm 5 \mathrm{VDC} / 0 \sim \pm 10 \mathrm{VDC}$)

	Joystick Up 3-speed			OFF	ON	OFF	ON	ON	
	Joystick Down 1-speed			OFF	OFF	ON	OFF	OFF	
	Joystick Down 2-speed			OFF	OFF	ON	ON	OFF	
	Joystick Down 3-speed			OFF	OFF	ON	ON	ON	
4-speed joystick (2nd, 3rd \& 4th speed share the same relay)	* Joystick back to zero check after transmitter startup								
				Neutral relay (optional)	$\underset{\text { relay }}{\text { Up }}$	Down relay	$\begin{gathered} \text { 2-speed } \\ \text { relay } \end{gathered}$	$\begin{gathered} \text { 3-speed } \\ \text { relay } \end{gathered}$	$\begin{aligned} & \text { 4-speed } \\ & \text { relay } \end{aligned}$
	Joystick neutral			ON	OFF	OFF	OFF	OFF	OFF
	Joystick Up 1-speed			OFF	ON	OFF	OFF	OFF	OFF
	Joystick Up 2-speed			OFF	ON	OFF	ON	OFF	OFF
	Joystick Up 3-speed			OFF	ON	OFF	ON	ON	OFF
	Joystick Up 4-speed			OFF	ON	OFF	ON	ON	ON
	Joystick Down 1-speed			OFF	OFF	ON	OFF	OFF	OFF
	Joystick Down 2-speed			OFF	OFF	ON	ON	OFF	OFF
	Joystick Down 3-speed			OFF	OFF	ON	ON	ON	OFF
	Joystick Down 4-speed			OFF	OFF	ON	ON	ON	ON
5-speed joystick (2nd, 3rd, 4th \& 5th speed share the same relay)	* Joystick back to zero check after transmitter startup								
		$\begin{array}{\|c} \begin{array}{c} \text { Neytral } \\ \text { relay } \\ \text { (optional) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Upper } \\ & \text { relay } \end{aligned}$	$\begin{array}{c\|c} \hline \text { er } & \begin{array}{c} \text { Lower } \\ \text { relay } \end{array} \end{array}$	$\begin{gathered} \text { 2-speed } \\ \text { relay } \end{gathered}$	$\begin{gathered} \text { 3-speed } \\ \text { relay } \end{gathered}$	$\begin{gathered} \text { 4-speed } \\ \text { relay } \end{gathered}$	5-speed relay	
	Joystick neutral	ON	OFF	OFF	OFF	OFF	OFF	OFF	
	$\begin{gathered} \text { Joystick } \\ \text { Up } \\ \text { 1-speed } \end{gathered}$	OFF	ON	OFF	OFF	OFF	OFF	OFF	
	$\begin{gathered} \hline \text { Joystick } \\ \text { Up } \\ \text { 2-speed } \end{gathered}$	OFF	ON	OFF	ON	OFF	OFF	OFF	
	$\begin{aligned} & \text { Joystick } \\ & \text { Up } \\ & \text { 3-speed } \\ & \hline \end{aligned}$	OFF	ON	OFF	ON	ON	OFF	OFF	
	$\begin{gathered} \text { Joystick } \\ \text { Up } \\ \text { 4-speed } \end{gathered}$	OFF	ON	OFF	ON	ON	ON	OFF	
	$\begin{gathered} \text { Joystick } \\ \text { Up } \\ \text { 5-speed } \end{gathered}$	OFF	ON	OFF	ON	ON	ON	ON	
	Joystick Down 1-speed	OFF	OFF	ON	OFF	OFF	OFF	OFF	
	Joystick Down 2-speed	OFF	OFF	ON	ON	OFF	OFF	OFF	
	Joystick Down 3-speed Joyster	OFF	OFF	ON	ON	ON	OFF	OFF	
	Joystick Down 4-speed	OFF	OFF	ON	ON	ON	ON	OFF	
	Joystick Down 5-speed	OFF	OFF	ON	ON	ON	ON	ON	

Outer extension, 1-speed joystick	Not included in the recei ver 32pcs relays. The maximum number of outer extensive relay is 32. Same function as 1-speed joystick.
Outer extension, 2-speed joystick (Not to share the 2nd speed relay)	Not included in the recei ver 32pcs relays. The maximum number of outer extensive relay is 32. Same function as 2-speed joystick. (not share the 2nd speed relay)
Outer extension, 2-speed joystick (Not to share the 2nd speed relay. 1st \& 2nd speed relays do not activate at the same time)	Not included in the receiver 32pcs relays. The maximum number of outer extensive 2nd speed relays do not activate at the same time)
Outer extension, 3-speed joystick (2nd \& 3rd speed share the same relay)	Not included in the receiver 32pcs relays. The maximum number of outer extensive relay is 32. Same function as 3-speed joystick. (2nd \& 3rd speed share the same relay)
Outer extension, 4-speed joystick (2nd, 3rd \& 4th speed share the same relay)	Not included in the receiver 32pcs relays. The maximum number of outer extensive relay is 32. Same function as 4-speed joystick. (2nd, 3rd \& 4th speed share the same relay)
Outer extension, 5-speed joystick (2nd, 3rd, 4th \& 5th speed share the same relay)	Not included in the receiver 32pcs relays. The maximum number of outer extensive relay is 32. Same function as 5-speed joystick. (2nd, 3rd, 4th \& 5th speed share the same relay)

(\#) VR = Variable Resistor

By using a 4-cord cable, you may connect the main receiver (left) and the extension one (right) as shown on below figure.

Please refer to " 18 . External Extension Contact" of figure 10 on page 33 for the position of connecting port.

Maximum number of relay for extension receiver is 32pcs.

Please note that the extension receiver is only for external extension only, not for main receiver.

JOYSTICK FUNCTION	REQUEST	DESCRIPTION
$\begin{aligned} & 0 \sim \pm 10 \mathrm{~V} \\ & 0 \sim \pm 5 \mathrm{~V} \end{aligned}$	* Installation: Interface card for voltage/current proportional output. Please make sure the JUMPER in front of the output PORT is plugged in the V mark position. * Only for: Proportional joystick and neutral type VR	Double axes proportional joystick: * Neutral position as 0°, output 0 V . * Joystick Upper/Left axis $0^{\circ} \sim+40^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (127 steps resolution) * Joystick Lower/Right axis $0^{\circ} \sim-40^{\circ}$ for $0 \sim-10 \mathrm{~V} / 0 \sim-5 \mathrm{~V}$ proportional output. (127 steps resolution) Single axis proportional joystick: * Neutral position as 0°, output 0V. * Joystick Upper axis $0^{\circ} \sim+35^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (127 steps resolution) * Joystick Lower axis $0^{\circ} \sim-35^{\circ}$ for $0 \sim-10 \mathrm{~V} / 0 \sim-5 \mathrm{~V}$ proportional output. (127 steps resolution) Neutral type VR: $* 0^{\circ}$ as rotating central position. Output 0 V . * Clockwise $0^{\circ} \sim+120^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (127 steps resolution) * Counterclockwise $0^{\circ} \sim-120^{\circ}$ for 0~-10V / 0~-5V proportional output. (127 steps resolution)
$\begin{aligned} & \hline 0 \sim+10 \mathrm{~V} \\ & 0 \sim+5 \mathrm{~V} \end{aligned}$	* Installation: Interface card for voltage/current proportional output. Please make sure the JUMPER in front of the output PORT is plugged in the V mark position. * Availability: All are available except for the digital joystick.	Double axes proportional joystick: * Neutral position, output 0V. Upper and Lower axis relays are OFF. * Joystick Upper/Left axis $0^{\circ} \sim+40^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (127 steps resolution) Upper axis relay is ON, Lower axis relay is OFF. * Joystick Lower/Right axis $0^{\circ} \sim-40^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Single axis proportional joystick: * Neutral position, output 0V. Upper and Lower axis relays are OFF. * Joystick Upper axis $0^{\circ} \sim+35^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (127 steps resolution) Upper axis relay is ON, Lower axis relay is OFF. * Joystick Lower axis $0^{\circ} \sim-35^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Neutral type VR: * 0° as rotating central position, output 0V. Upper and Lower axis relays are OFF. * Clockwise $0^{\circ} \sim+120^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (127 steps resolution)

		Upper axis relay is ON, Lower axis relay is OFF. * Counterclockwise $0^{\circ} \sim-120^{\circ}$ for $0 \sim-10 \mathrm{~V} / 0 \sim-5 \mathrm{~V}$ proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Single type VR: $* 0^{\circ}$ as rotating central position, output 0 V . * Clockwise $0^{\circ} \sim+240^{\circ}$ for $0 \sim+10 \mathrm{~V} / 0 \sim+5 \mathrm{~V}$ proportional output. (255 steps resolution)
$\begin{aligned} & 0 \sim 20 \mathrm{~mA} \\ & 0 \sim 24 \mathrm{~mA} \end{aligned}$	* Installation: Interface card for voltage/current proportional output. Please make sure the JUMPER in front of the output PORT is plugged in the I mark position. * Availability: All are available except for the digital joystick.	Double axes proportional joystick: * Neutral position, output 0mA. Upper and Lower axis relays are OFF. * Joystick Upper/Left axis $0^{\circ} \sim+40^{\circ}$ for $0 \sim 20 \mathrm{~mA} / 0 \sim 24 \mathrm{~mA}$ proportional output. (127 steps resolution) Upper axis relay is ON, Lower axis relay is OFF. * Joystick Lower/Right axis $0^{\circ} \sim-40^{\circ}$ for $0 \sim 20 \mathrm{~mA} / 0 \sim 24 \mathrm{~mA}$ proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Single axis proportional joystick: * Neutral position, output 0mA. Upper and Lower axis relays are OFF. * Joystick Upper axis $0^{\circ} \sim+35^{\circ}$ for $0 \sim 20 \mathrm{~mA} / 0 \sim 24 \mathrm{~mA}$ proportional output. (127 steps resolution) Upper axis relay is ON, Lower axis relay is OFF. * Joystick Lower axis $0^{\circ} \sim-35^{\circ}$ for $0 \sim 20 \mathrm{~mA} / 0 \sim 24 \mathrm{~mA}$ proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Neutral type VR: * 0° as rotating central position, output 0 mA . Upper and Lower axis relays are OFF. * Clockwise $0^{\circ} \sim+120^{\circ}$ for $0 \sim 20 \mathrm{~mA} / 0 \sim 24 \mathrm{~mA}$ proportional output. (127 steps resolution) Upper axis relay is ON, Lower axis relay is OFF. * Counterclockwise $0^{\circ} \sim-120^{\circ}$ for $0 \sim 20 \mathrm{~mA} / 0 \sim-5 \mathrm{~V}$ proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Single type VR: * 0° in the left start position within rotating range. Output 0 mA . * Clockwise $0^{\circ} \sim+240^{\circ}$ for $0 \sim 20 \mathrm{~mA} / 0 \sim 24 \mathrm{~mA}$ proportional output. (255 steps resolution)
4~20mA	* Installation: Interface card for voltage/current proportional output. Please	Double axes proportional joystick: * Neutral position, output 4mA. Upper and Lower axis relays are OFF. * Joystick Upper/Left axis $0^{\circ} \sim+40^{\circ}$ for $4 \sim 20 \mathrm{~mA}$ proportional

	make sure the JUMPER in front of the output PORT is plugged in the I mark position. * Availability: All are available except for the digital joystick.	output. (127 steps resolution) Upper axis relay is ON, Lower axis relay is OFF. * Joystick Lower/Right axis $0^{\circ} \sim-40^{\circ}$ for 4~20mA proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Single axis proportional joystick: * Neutral position, output 4mA. Upper and Lower axis relays are OFF. * Joystick Upper axis $0^{\circ} \sim+35^{\circ}$ for $4 \sim 20 \mathrm{~mA}$ proportional output. (127 steps resolution) Upper axis relay is ON, Lower axis relay is OFF. * Joystick Lower axis $0^{\circ} \sim-35^{\circ}$ for 4~20mA proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Neutral type VR: * 0° as rotating central position, output 4 mA . Upper and Lower axis relays are OFF. * Clockwise $0^{\circ} \sim+120^{\circ}$ for $4 \sim 20 \mathrm{~mA}$ proportional output. (127 steps resolution) Upper axis relay is ON, Lower axis relay is OFF. * Counterclockwise $0^{\circ} \sim-120^{\circ}$ for $4 \sim 20 \mathrm{~mA}$ proportional output. (127 steps resolution) Upper axis relay is OFF, Lower axis relay is ON. Single type VR: ${ }^{*} 0^{\circ}$ as the left start position within rotating range, output 4 mA . * Clockwise $0^{\circ} \sim+240^{\circ}$ for $4 \sim 20 \mathrm{~mA}$ proportional output. (255 steps resolution)
Customized (OPTION) proportional output card	* Base on customers' requests	Base on customers' requests
Neutral check	* Digital / Proportional is compelled to have neutral check * Selectable at VR	When transmitter is ON, the joystick / VR has to be checked if it is at 0° position, then transmitter can be started. If not, the error status light will display as "pushbutton jammed / joystick is not at neutral position" (Please refer to encoder status table.) and the transmitter will not be started.
Plus/Minus (+/-)voltage exchange	* Only for proportional joystick or neutral type * Select $0 \sim \pm 5 \mathrm{~V}$ or $0 \sim \pm 10 \mathrm{~V}$	Plus / Minus output reverse Example: Original $=>-5 \mathrm{~V}$ (Lower axis) $\sim 0 \mathrm{~V}$ (Neutral) $\sim($ Upper axis $)+5 \mathrm{~V}$ Select this function $=>+5 \mathrm{~V}($ Lower axis $) \sim 0 \mathrm{~V}$ (Neutral) $\sim($ Upper axis) -5 V
Axis relay	* Not selectable: single-side type	* There are 2pcs of relay for Axis relay. One is Upper/Left axis, the other is Lower/Right axis.

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { VR and digital } \\ \text { joystick } \\ \text { (digital joystick } \\ \text { is available with } \\ \text { axis relay) }\end{array} & \begin{array}{c}\text { * Joystick is at neutral position or when neutral type VR is at 0 } \\ \text { position, 2-axis relays are OFF. }\end{array} \\ \text { * Joystick Upper/Left axis or neutral VR operates clockwise: } \\ \text { Upper/Left axis relay is ON, Lower/Right axis relay is OFF. } \\ \text { * Joystick Lower/Right axis or neutral VR operates counter- } \\ \text { clockwise: } \\ \text { Upper/Left axis relay is OFF, Lower/Right axis relay is ON. }\end{array}\right\}$

Left/Right exchange	joystick only	Not to select: 1.Left cross axis: Up/Down axis 2.Left cross axis: Left/Right axis 3.Right cross axis: Left/Right axis 4.Small single axis To select: Right cross axis: Up/Down axis
Joystick share the same accelerator relay	* Joystick/VR are selectable	* The selected joystick or VR share the same relay. * Either the selected joystick or VR is not in the center/ 0° position (with output), the relay with joystick share the same accelerator is ON. * The selected joystick or VR is back to the center $/ 0^{\circ}$ position, the relay with joystick share the same accelerator is OFF.
Opposite side protection of joystick spring return	* For digital and proportional joysticks only. * For cross type joystick, not for small single axis joystick.	* When the joystick is back to neutral position, if the spring inertia is too strong, then the joystick will spring back to the opposite position. But the opposite relay output will be inhibited.
Assign the $\mathbf{8}^{\text {th }}$ axis as the output that share the same accelerator	* Digital joystick without this function * All the activated joysticks/VR with the same style * Not to use the 8th joystick/VR (reserved for sharing the same accelerator output)	* The 8th joystick/VR are reserved for sharing the same accelerator output. Not to use for general joystick. * Joystick/VR share the same accelerator output is the same as the selected joystick or VR as highest output "absolute value". (output always with plus voltage). * The selected joystick or VR is back to neutral $/ 0^{\circ}$ position, joystick/VR share the same accelerator analog output back to neutral $/ 0^{\circ}$ position output.
8 joysticks allow only one function at the same time	* Either cross type joystick restriction or this function can be selected	* When "joystick/VR share the same accelerator analog output" is not considered, only 1 out of 8 with output. * 1~8 joysticks/VR, detect from joystick/VR 1 to 2,3~8. At last, the joystick function first with output (joystick or VR not on neutral $/ 0^{\circ}$ position), the rest without output. When "all joystick/VR (including the one without function)" back to neutral $/ 0^{\circ}$ position, output back to neutral $/ 0^{\circ}$ position and start again.
Cross type joystick restriction	* Joystick only * Only 1 out of 8 single axis joysticks is allowed to function independently. * Restriction for each two	* Take 1-2 cross type joystick restriction as an example: Joystick $1 \& 2$ without neutral but with output and another joystick output is not allowed ($1 \& 2$ joystick without neutral at the same time, joystick 1 has the priority). When joystick $1 \& 2$ back to neutral, output back to neutral position and start again.

	$\begin{aligned} & \text { joysticks 1-2, } \\ & 3-4,5-6 \& 7-8 . \end{aligned}$	
SICK LASER	* Single side VR is not selectable	* SICK LASER "NORTH" is restricted to Up axis. The purpose is for the very north positioning. * SICK LASER "SOUTH" is restricted to Down axis. The purpose is for the very south positioning. * Joystick 1 is to the detecting point of CN13 $1 \mathrm{~N}(\mathrm{Up}$ axis)/1S(Down) input. * Joystick 2 is to the detecting point of CN13 2N(Up axis)/2S(Down) input. * Joystick 3 is to the detecting point of CN13 3N(Up axis)/3S(Down) input. * Joystick 4 is to the detecting point of CN13 $4 \mathrm{~N}($ Up axis)/4S(Down) input. * Joystick 5 is to the detecting point of CN14 $5 \mathrm{~N}(\mathrm{Up}$ axis)/5S(Down) input. * Joystick 6 is to the detecting point of CN14 $6 \mathrm{~N}(\mathrm{Up}$ axis)/6S(Down) input. * Joystick 7 is to the detecting point of CN14 $7 \mathrm{~N}(\mathrm{Up}$ axis)/7S(Down) input. * Joystick 8 is to the detecting point of $\mathrm{CN} 148 \mathrm{~N}(\mathrm{Up}$ axis) $/ 8 \mathrm{~S}($ Down $)$ input. * $\mathrm{CN} 2+0 \mathrm{~V}$ supplies trigger purpose power level. Example: $0 \sim \pm 10 \mathrm{~V}$ output, SENSORs are equipped on the North/South end of crane rail. When the crane does not reach the North SENSOR, the input detecting point that is sent from SENSOR to CN13 1 N will not be triggered; When the crane reaches the North SENSOR, the SENSOR will send detecting point 0 V to CN13 1N input; When the crane does not reach the South SENSOR, the input detecting point that is sent from SENSOR to CN13 1S will not be triggered; When the crane reaches the South SENSOR, the SENSOR will send detecting point 0 V to CN13 1 S input. When joystick is operated to the Up axis position, the crane will go to North. Before joystick reaches the North SENSOR, the detecting point of CN13 1N input will not be triggered. The output will depend on joystick Up axis angle $0 \sim+10 \mathrm{~V}$. Crane will go to North position continuously. When crane reaches the North SENSOR, the detecting point of CN13 1N input will be 0V. The decoding firmware will be restricted as the North output. That is, when joystick is operated to Up axis position, the output will be 0 V . Then crane cannot go to North position anymore. When joystick is operated to the Down axis position, the crane will go to South. Before crane reaches the South SENSOR, the detecting point of CN13 1S input will not be triggered. The output will depend on the angle $0 \sim-10 \mathrm{~V}$ of joystick Down axis. Crane will go to South position continuously.

		When crane reaches the North SENSOR, the detecting point of CN13 1S input will be 0V. The decoding firmware will be restricted as South output. That is, when joystick is operated to Down axis position, the output will be 0V. Then crane cannot go to South anymore.
Selection of linear output curve: linear	* For proportional joystick and VR only	* The tilt percentage for input and output is fixed. Output from neutral to maximum value is a straight line. * Joystick/VR angle output corresponds to the tilt percentage of this straight line.
Selection of linear output curve: curve	* For proportional joystick and VR only	* Forward/reverse parabola curves may be changed by dragging mouse. * Joystick/VR angle output corresponds to this curve.
Selection of linear output curve: logic	* For proportional joystick and VR only	* Output status is only available with neutral and highest level, no in between one.
* Joystick moves/VR rotates to "certain angle", the output from		
neutral immediately to highest point of the axis.		
* Certain angle: changeable by dragging the mouse.		

4.2 Joystick Configurations and Settings

JOYSTICK	SETTING							
	Joystick1	Joystick2	Joystick3	Joystick4	Joystick5	Joystick6	Joystick7	Joystick8
	Left double axis type Up/Down axis	Left double axis type Left/Right axis			Right double axis type Up/Down axis	Right double axis type Left/Right axis		
	Left double axis type Up/Down axis	Left double axis type Left/ Right axis	(Left) small single axis	(Right) small single axis	Right double axis type Up/Down axis	Right double axis type Left/Right axis		
	(A) small single axis	(B) small single axis	(C) small single axis	(D) small single ax is	Right double axis type Up/Down axis	Right double axis type Left/Right axis		
	small single axis							
0	small single axis							
					small single axis			
	(A) small single axis	(B) small single axis						
(1)	(A) small single axis				(B) small single axis			
					(A) small single axis	(B) small single axis		
	(A) small single ax is	(B) small single axis	(C) small single axis					
	(A) small single axis	(B) small single axis			(C) small single axis			
(0)					(A) small single axis	(B) small single ax is	(C) small single ax is	
	(A) small single axis	(B) small single axis			(C) small single axis	(D) small single axis		
	(A) small single axis	(B) small single axis	(C) small single axis		(D) small single axis	(E) small single ax is		

	(A) small single axis	(B) small single ax is	(C) small single ax is		(D) small single ax is	(E) small single ax is	(F) small single axis	
	(A) small single axis	(B) small single axis	(C) small single axis	(D) small single axis	(E) small single axis	(F) small single ax is	(G) small single axis	
(\%)	(A) small single axis	(B) small single ax is	(C) small single axis	(D) small single ax is	(E) small single axis	(F) small single axis	(G) small single axis	(H) small single ax is

When right cross type joystick is applied, the software setting for Joystick5 should be: Joystick direction [Up/Down] or [Left/Right] has to be exchanged.

4.3 Transmitter Pushbutton Descriptions

4.3.1 Pushbutton Types:

EID switch	"No function "is not selectable	"No function "is not selectable	"No check compelled" is not selectable	* Change transmitter EID b0~b3 *Switch ON, EID bit=1; switch OFF, EID bit=0. * Either mix mode selector switch or EID ENALE is selectable * Receiver with AUTOSCAN function select EID bit match or bit or function
LID switch	"No function "is not selectable	"No function "is not selectable	"No check compelled" is not selectable	* Change transmitter LID b0~b3 *Switch ON, LID bit=1; switch OFF, LID bit=0. *Only 1 out of 2 LID ENALE function is selectable for mix mode selector switch
Digital joystick 2~5 speeds activating button	"No function "is not selectable	"No function "is not selectable	"Pre-checking" is selectable	*Select the pushbutton so that the pushbutton may control the digital joystick. * When the pushbutton is not depressed, only 1-speed is activated even if the joystick is operated to 2~5 speeds. *Joystick 2~5 speeds only activated with relay output when the pushbutton is depressed without releasing. * Maximum 4pcs pushbuttons. *Pushbutton or auto-return toggle switch is acceptable. No corresponding relay output. *If the digital joystick is not controlled by this pushbutton, then the 2~5 speeds is not limited at 1 speed.

* EMS button: In case of an emergency, press down the red emergency stop button (EMS) will immediately deactivates the transmitter and receiver MAIN relay. This is the rotary return type.

After the emergency stop button is elevated, please refer to "Transmitter startup condition" on Page 28 to restart.

EN ISO 13849-1 type: Press emergency stop button and switch off the transmitter power immediately, then the transmitter will stop sending commands. After the receiver is not receiving any signal for 1 second, MAIN relay will be off.

Regular type: Press emergency stop button and the transmitter will be sending emergency stop command. As soon as the receiver receives stop command, the MAIN relay will be off. When the emergency stop button is pressed for more than 1.5 seconds, the transmitter power will be switched off automatically.

* START button: Press to start the system and activate the receiver MAIN relay at the same time
* KEY: Power switch

4.3.2 Function Settings:

* ID: Range 00000~FFFF (hex), length 20bit. Total 1,048,576 sets of unique ID codes. Each Alpha 6000 system with unique manufacturing ID setting. This will ensure that only commands from the matching control transmitter can be carried out without any interference from other radio systems.

Remark 1: ID with 4 lower digit b[3:0] is called LID
Remark 2: Transmitter with function "mix mode selector switch-LID function" or "LID switch" will replace the original LID.
Remark 3: Receiver with function "LID bit match" or "LID bit " from AUTOSCAN will replace the original LID.

* Channel: The channel in use assigned

Remark 1: transmitter with function "mix mode selector switch-channel in use function" or "intelligent channel change" will replace the original channel in use.
Remark 2: Receiver with channel assigned from AUTOSCAN will replace the original channel in use.

* Service number: Alpha 6000 manufacturing serial number, for after service purpose.
* Manufacturing date: manufacturing date
* Customer remark: 16 alphabets or numbers recordable

4.3.2.1 Transmitter Function Settings

* Transmitter startup condition:Power key startup: Rotate the power key clockwise to "ON" position to turn on the transmitter power.
() START button/press START to activate MAIN relay: Rotate the power key clockwise to "ON" position, then press START to turn on the transmitter power.
* Transmitter power on, EMS button press / release function compel to check

[⓪Not enable:
(0) Enable: After transmitter power is turned on and before EMS button is not depressed, the status LED is displayed as: green LED ON_0.1sec, OFF_0.9sec blink. Depress EMS button and elevate it to re-start the transmitter. This is to ensure no function error on EMS button before operation.

Remark: After transmitter power is turned on, the status LED is displayed as "green LED ON_0.1sec,OFF_0.9sec blink". It means transmitter power is turned on and EMS button press/release function is checked.

* Transmitter inactivity overtime and then enter sleep mode:Immediate : No press down pushbutton and joystick back to neutral, the transmitter will enter sleep mode immediately.
1~120mins : No press down pushbutton and joystick back to neutral, after 1~120mins (selectable)/ 5 minutes manufacture setting, the transmitter will enter sleep mode immediately.
No auto shutdown/never shutdown: Transmitter without sleeping mode.

Remark : Transmitter enter sleep mode- Status LED OFF, power green LED ON, RF module and A/G sensor module OFF, then enter power saving mode.

* After transmitter enter sleep mode, re-awakening condition:
© Re-start: Power key -> OFF -> ON
© Joystick /any pushbutton: Pushbutton is pressed or joystick/VR is operated/rotated or power key -> OFF -> ON
© START button: Joystick is back to neutral position and release pushbutton. Press START button to awaken transmitter. (Press START button when joystick is not in neutral position or pushbutton is pressed, red status LED on and transmitter cannot be awakened)
* Abnormal buss from transmitter:
[© Not enable: Buzz from transmitter START/LV/joystick correction no need to enable.
[Enable: Buzzer sound when transmitter error status LED is flash.
* Transmitting power
(0) $-2 \sim+20 \mathrm{dbm}$: Default setting is based on the transmitting power where the area/country is regulated. For any changes, please note if the setting meet the requirement of area/country.
* Transmitter drop protection:
[© Not enable:
() Enable: If transmitter drops during operation, transmitter will send emergency stop signal to receiver and MAIN relay will be OFF. (Transmitter should equip with A/G SENSOR module)
© Sensitivity $-3 \sim+3$: Range of sensitivity adjustment for dropping detection. The sensitivity is pre-set as standard one.

Shutoff transmitter power: When transmitter drops over the range of detective sensitivity, signal transmission from transmitter to recei ver will be shutoff. Buzzer and error status LED display will continue to warn the operator. MAIN relay will be deactivated after the receiver receives no signal from the transmitter.

Re-start the transmitter:

1. Rotate the power switch to 'OFF' position and then 'ON' and start the transmitter again.
2. Press the emergency stop button, elevate it again and then start the transmitter again.Inhibit the joystick and button functions:
When transmitter drops to the sensor sensitivity limit, control actively to all the joysticks in use to become neutral output status. VR output remains on the point where transmitter is dropped. Pushbutton types that control automatically: single speed / single speed interlock / double speed / double speed interlock pushbuttons are all released. Other pushbuttons or switches output remains locking on the status of transmitter dropping. The transmitter buzzer and error status light will be ON continuously to warn the operator.

To release joystick and pushbutton function:

a. To release joystick and pushbutton function, when joysticks are neutral (*) and pushbuttons / switches are released, press START button to release "Inhibit the joystick and button functions". (* VR output remains on the point where transmitter is dropped and cannot be changed until START button is pressed, transmitter is switched off or EMS is pressed)
b. Press EMS button and release, then start the system again by following the "Transmitter boot condition".

* Transmitter tilt protection:
[© Not enable:
($)> \pm 30^{\circ} \sim \pm 50^{\circ}$:
Transmitter in operation, when the tilt angle is bigger than default setting, the transmitter will send emergency stop signal to the receiver and MAIN relay will be OFF. (Transmitter should equip with an A/G SENSOR module) The initial press angle of the transmitter power / START button is defined as 0°.
(0) Switch off transmitter power:

When the transmitter tilt angle is bigger than the default setting, the signal transmission from transmitter to receiver will be disabled automatically. The transmitter buzzer and error status LED will be ON continuously to warn the operator that the receiver cannot receive any signal from the transmitter and the MAIN relay will be deactivated. To restart the transmitter, rotate the power switch to OFF and then to ON position. Then start the system again by following the "Transmitter boot condition".
© Inhibit the joystick and pushbutton function:
When the transmitter tilt angle is bigger than the default setting, all the joysticks will be inhibited as neutral output status automatically. VR output remains at the point where transmitter is dropped. Pushbutton types that control automatically: single speed / single speed interlock / double speed /
double speed interlock pushbuttons are all released. The transmitter buzzer and error status light will be ON continuously to warn the operator. To release the inhibited joystick and pushbuttons function by the error status light:

1. To release "Inhibit the joystick and pushbutton function", press START button when the joystick position is neutral (unrelated to VR) and pushbutton is released. The transmitter buzzer and error status light will be OFF then back to normal operation.
2. After the emergency stop button is elevated, start the system again by following the "Transmitter boot condition".

Note: Transmitter drop and tilt protection are sharing the same method.

* Transmitter transmission intermittently
[© Not enable: Transmitter sends signal 10 times every second.
(o) Enable: Transmitter sends signal 4 times every second.
* Transmitter battery replacement, auto-recoveryNot enable:
© Enable: The batteries can be replaced during transmitter operation. (without pressing EMS button or turning off the power) After the batteries are replaced, the transmitter can be operated normally. Transmitter START button startup and EMS button press/release check will be omitted.

Remark: This function is only for the transmitter. When the battery is removed from the transmitter, there will be no signal on the receiver and MAIN relay will be deactivated.
A. If "receiver MAIN activate term: ID matches" is selected: Signal will be sent as soon as transmitter battery is inserted. When ID matches and receiver receives signal from the transmitter, MAIN relay will be activated.
B. If "receiver MAIN activate term: START button" is selected: Signal will be sent as soon as transmitter battery is inserted. When ID matches and receiver receives signal from the transmitter, MAIN relay will not be activated until START button is pressed.

* Transmitter power ON, emergency stop button press/release check
[© Not enable:
(O Enable: After the transmitter power key is rotated to ON position and before the emergency stop button is pressed, the LED status: green LED blinks ON_0.1sec, OFF_0.9sec. Press and release emergency stop button, then transmitter will be started. This is to ensure the emergency stop button function without problem before transmitter operation.

4.3.2.2 Receiver Function Settings

* Receiver MAIN relay activate conditionID match: Transmitter and receiver ID is identical
(0) START button: Make sure transmitter and receiver ID is identical, then press START button on the transmitter.

* Receiver MAIN relay dynamic check

Not enable:
(0) Enable: Before MAIN relay is ON, first proceed with dynamic check. If pass, then MAIN relay is

ON; if NG, then error status "MAIN relay lock" appear.
(0) Receiver power ON: Proceed with dynamic check when receiver power is ON. If pass, then start the system; if NG, then error status "MAIN relay lock" appear.
START and receiver power ON: Dynamic check for both operation and power ON conditions.

Remark 1: When MAIN relay is on dynamic check status, MAIN1 relay close and MAIN2 relay open. After MAIN1 relay feedback normally, MAIN2 relay close and MAIN1 relay open, then check MAIN2 relay feedback.

* Receiver channel auto-scan
[() Not enable: Receiver receives channel regularly
(O) Enable and transmitter power ON enables intelligent channel change: "receiver auto-scan channels" and "transmitter power ON intelligent channel change" activate at the same time.

Transmitter power On intelligent frequency change:

1. When the software setting is started, there will have 8 channels available automatically. The 8 channels are used for receiver auto scanning and the transmitter can also select the best communication channel from them.
2. It takes 1~3 seconds for every channel selection when transmitter is started. Time for receiver channel auto scanning is $1 \sim 6$ seconds. (pre-set as master / slave channel exchange scanning mode)
3. Transmitter encoder version has to be V02.08 (incl.) or above and setting software has to be V03.05 (incl.) or above.
(0) Enable Channel stage selection:

2~16 stages are available. Each stage may assign receiving channel, LID \& EID.

Delay time for entering auto-scan channel:

0~3 seconds are available. Before entering channel auto-scan, the search will stay for $0 \sim 3$ seconds at the original channel (optional). If transmitter signal is received and matches the frequency auto-scan lock condition, then the system enters operation status again. If delay time over $0 \sim 3$ seconds, the system will enter frequency auto-scan status again.

Master/slave channel auto-scan exchange mode:

Master channel is the previous channel in use; the rest $1 \sim 16$ channels are slave channels.

Master/salve channel auto-scan exchange sequence: Master channel -> $1^{\text {st }}$ setting channel -> Master channel -> $2^{\text {nd }}$ setting channel \qquad Master channel -> Last setting channel
\uparrow \qquad 1

Non-master/slave channel auto-scan exchange sequence: $1^{\text {st }}$ setting channel $\quad->2^{\text {nd }}$ setting channel $\ldots \ldots .$. Last setting channel
\uparrow \qquad -1
© Auto-scan lock, LV relay ON for 3 seconds: Enable LV relay first to select. The function is the same as ALARM relay.
(o) Auto-scan master channel lock condition

ID match_It is used only for master channel under auto-scan condition which transmitter ID matches receiver one.
START button_It is used only for master channel under auto-scan condition which transmitter ID matches receiver one. The transmitter START button has to be pressed down at the same time.

Auto-scan slave channel lock condition

ID match: It is used only for slave channel under auto-scan condition which transmitter ID matches receiver one.

START button: It is used only for slave channel under auto-scan condition which transmitter ID matches receiver one. The transmitter START button has to be pressed down at the same time.
(o) Slave channel lock time: 0~3 seconds. (optional) Only when auto-scan slave channel is locked for $0 \sim 3$ seconds, then it is confirmed to be locked. (MAIN RELAY ON)
(0) LID Disable: Not in use

Bit match: The LID setting within 1~16 stages will replace the original LID of ID and become new 20bit ID. The 20bit ID has to be identical to the ID received.
Bit or: The LID setting within $1 \sim 16$ stages will replace the original LID of ID. Please refer to below for the "bit or" comparison table. " \vee " means accept.

(0) EID [Disable: Not in use

Bit match: In addition to 20 bit ID, all the $1 \sim 16$ EID setting and the EID received have to match.
Bit or: In addition to 20 bit ID, all the $1 \sim 16$ EID setting and the EID received, the "EID bit or" also has to match. Please refer to below for the "EID bit or" comparison table. " \vee " means accept.

EID received autoscan EID setting	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0001		\checkmark														
0010			\checkmark	\checkmark												
0100					\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
1000									\checkmark							

* The assigned pushbutton enter AUTOSCAN function: When MAIN relay is ON, the transmitter will pass its
operation priority to the other one.
Setting request: Transmitter 1 is set as channel 1 and transmitter 2 is set as channel 2. AUTOSCAN enable is set as 2 stages. $1^{\text {st }}$ stage is set as the channel for transmitter 1 and $2^{\text {nd }}$ stage is set as the channel for transmitter 2. Select one single speed pushbutton and set as "assigned pushbutton enter AUTOSCAN function". Except for different channels, setting for transmitter $1 \& 2$ has to be completely identical.

Enable method: When the original transmitter in operation, receiver MAIN relay is ON, joystick or neutral VR back to neutral position and single side VR back to 0° position, press down the assigned pushbutton, then the receiver enters AUTOSCAN status and searches for the other transmitter. The other transmitter has to START and standby, but no assigned pushbutton is pressed. After receiver successfully catches the other transmitter, the AUTOSCAN function will stop and the operation priority is transferred.

* Receiver relay setting
(LV relay: Transmitter low voltage relay or AUTOSCAN channel lock instruction

Function ON: Transmitter low voltage, LV relay ON
ON 2sec \& OFF 2sec repeatedly: Transmitter low voltage, LV relay ON 2sec \& OFF 2 sec repeatedly ON 1sec \& OFF 1sec repeatedly: Transmitter low voltage, LV relay ON 2sec \& OFF 2 sec repeatedly

Shutoff $\left[\begin{array}{l}\text { Transmitter battery change or transmitter shutoff: Transmitter shutoff or change } \\ \text { fully charged battery. } \\ \text { (Not suitable for receiver channel AUTOSCAN enable) } \\ \text { Transmitter battery change: Transmitter should change the fully charged battery }\end{array}\right.$
Transmitter battery change: Transmitter should change the fully charged battery.
© STOP relay: Emergency stop relay
RELAY ON: Press emergency stop button when MAIN relay is ON. Or, receiver is started but transmitter emergency stop button is pressed.
RELAY OFF: To activate emergency relay, transmitter non-emergency code has to be received and receiver startup request has also to be met, that is, MAIN relay is activated.
(0) ID relay: Identical to MAIN relay ON/OFF.
© START relay: Press START button on transmitter, START relay ON; release START button then START relay OFF
(O) ALARM relay \quad MAIN relay ON $[$ Not in use.
$\left[\begin{array}{c}\text { MAIN relay ON }\left[\begin{array}{l}\text { Not in use. } \\ \text { ON 1~3sec: When MAIN relay ON, ALARM relay ON } 1 \sim 3 \mathrm{sec} \\ \text { MAF }\end{array}\right. \\ {\left[\begin{array}{l}\text { Not in use. } \\ \text { ON 1~3sec: When MAIN RELAY OFF, ALARM relay ON } \\ 1 \sim 3 \mathrm{sec}\end{array}\right.}\end{array}\right.$

* RELAY K1~K32 output position exchange: Corresponding function for relay K1~K32 is exchangeable at will.

Case 1: Each relay module is available with DC output relay up to 8pcs. (The change of AC output relay is
available upon request) That is each DC voltage output module is available with 8pcs of DC voltage relay output. Whenever two types of voltage output, including relay and DC voltage output, are mix distributed, relay K1~K32 may be applied to exchange output position. Arranging relay output to relay module and DC voltage output voltage to AC voltage output module.

For example: 14-relay output and 7 DC voltage output are needed.
If you apply relay K1~K32 output position to exchange functions, the 14 relays will be arranged from K1 toK14. Each receiver relay module, including slot I and II, with one relay module. Keep K15 \& K16 empty and then arrange 7 DC voltage output from K17 to K23. Insert DC voltage output module to receiver relay module slot III.

Case 2: After the wiring for receiver relay output is completed, if more or less function is needed, relay number and sequence will have to be changed and the re-wiring is needed. Relay K1~K32 output can be applied to exchange function. For increasing relay numbers, the new wiring sequence can be re-arranged manually to match the original wiring arrangement. Then move the increasing relays to the last position in sequence, so that only the increased relay contacts need to be wired, the original wiring will remain unchanged. For decreasing relay numbers, the new wiring sequence can be re-arranged manually to match the original wiring arrangement. Then keep the decreasing relay positions empty, so the original wiring will remain unchanged.

4.4 Special Types:

* "Pitch and Catch" Feature/Assigned button AUTOSCAN as below:

(1) Two transmitters (or more) take turn to control one receiver.
(2) Move the transmitter joystick and VR in operation back to neutral position and depress assigned pushbutton for 0~3 seconds (by following "enter auto-scan channel delay time").
(3) After the assigned pushbutton signal is received by the receiver, the receiver will look for the transmitter which is going to take turn by AUTOSCAN.
(4) Press START button on the transmitter that catches the signal for $0 \sim 3$ seconds (No assigned pushbutton is pressed. Please follow "time for salve channel lock" setting).
(5) After the receiver has scanned and caught the transmitter that takes over, the AUTOSCAN control will also be taken over by the transmitter that takes over.
(6) Please turn off the original transmitter in operation.

* One Transmitter to Two Receivers Feature (Tandem Mode): two operation types
(1) Transmitter 1 operates receiver 1 or receiver 2 independently; transmitter 2 operates receiver 1 or receiver 2 independently.
(2) Transmitter 1 operates receiver $1 \& 2$ at the same time, or transmitter 2 operates receiver 1 \& 2 at the same time.
* The transmitter that controls the receiver gets the control priority.

(3) Maximum up to 1 transmitter to 8 receivers (Tandem mode)

$\frac{\text { Alpha } 6000}{\text { 为 }}$

Random Access Feature:

(1) This feature allows for up to 8 operators randomly accessing up to 8 crane systems.
(2) 8 receivers with respective channels.
(3) The channel changes can be done via a multi-position selector switch on each transmitter.

* Do not control one receiver with two or more than two transmitters at the same time.

Alpha 6000
Transmitter 1

Alpha 6000
 Transmitter 2

Alpha 6000

Transmitter 3

电
 Transmitter 8

4.5 Customized Types

There are many types of customized system available with the combination of single-axis joystick, double-axis joystick, pushbuttons and switches for the Alpha 6000. Please talk to the manufacturer for more information.

4.6 Frequency Table

CHANNEL	433MHz/25k	CHANNEL	447MHz/12.5k
401	433.0750 MHz	701	447.8750 MHz
402	433.1000 MHz	702	447.8875 MHz
403	433.1250 MHz	703	447.9000 MHz
404	433.1500 MHz	704	447.9125 MHz
405	433.1750 MHz	705	447.9250 MHz
406	433.2000 MHz	706	447.9375 MHz
407	433.2250 MHz	707	447.9500 MHz
408	433.2500 MHz	708	447.9625 MHz
409	433.2750 MHz	709	447.9750 MHz
410	433.3000 MHz	710	447.9875 MHz
411	433.8250 MHz	711	448.0000 MHz
412	433.8500 MHz	712	448.0125 MHz
413	433.8750 MHz	713	448.0250 MHz
414	433.9000 MHz	714	448.0375 MHz
415	433.9250 MHz	715	448.0500 MHz
416	433.9500 MHz	716	448.0625 MHz
417	433.9750 MHz	717	448.0750 MHz
418	434.0000 MHz	718	448.0875 MHz
419	434.0250 MHz	719	448.1000 MHz
420	434.0500 MHz	720	448.1125 MHz
421	434.0750 MHz	721	448.1250 MHz
422	434.1000 MHz	722	448.1375 MHz
423	434.1250 MHz	723	448.1500 MHz
424	434.1500 MHz	724	448.1625 MHz
425	434.1750 MHz	725	448.1750 MHz
426	434.2000 MHz	726	448.1875 MHz
427	434.2250 MHz	727	448.2000 MHz
428	434.2500 MHz	728	448.2125 MHz
429	434.2750 MHz	729	448.2250 MHz
430	434.3000 MHz	730	448.2375 MHz
431	434.3250 MHz	731	448.2500 MHz
432	434.3500 MHz	732	448.2625 MHz
433	434.3750 MHz	733	448.2750 MHz
434	434.4000 MHz	734	448.2875 MHz
435	434.4250 MHz	735	448.3000 MHz
436	434.4500 MHz	736	448.3125 MHz
437	434.4750 MHz	737	448.3250 MHz
438	434.5000 MHz	738	448.3375 MHz
439	434.5250 MHz	739	448.3500 MHz

440	434.5500 MHz	740	448.3625 MHz
441	434.5750 MHz	741	448.3750 MHz
442	434.6000 MHz	742	448.3875 MHz
443	434.6250 MHz	743	448.4000 MHz
444	434.6500 MHz	744	448.4125 MHz
445	434.6750 MHz	745	448.4250 MHz
446	434.7000 MHz	746	448.4375 MHz
447	434.7250 MHz	747	448.4500 MHz
448	434.7500 MHz	748	448.4625 MHz
449	434.7750 MHz	749	448.4750 MHz
450	433.3250 MHz	750	448.4875 MHz
451	433.3500 MHz	751	448.5000 MHz
452	433.3750 MHz	752	448.5125 MHz
453	433.4000 MHz	753	448.5250 MHz
454	433.4250 MHz	754	448.5375 MHz
455	433.4500 MHz	755	448.5500 MHz
456	433.4750 MHz	756	448.5625 MHz
457	433.5000 MHz	757	448.5750 MHz
458	433.5250 MHz	758	448.5875 MHz
459	433.5500 MHz	759	448.6000 MHz
460	433.5750 MHz	760	448.6125 MHz
461	433.6000 MHz	761	448.6250 MHz
462	433.6250 MHz	762	448.6375 MHz
463	433.6500 MHz	763	448.6500 MHz
464	433.6750 MHz	764	448.6625 MHz
465	433.7000 MHz	765	448.6750 MHz
466	433.7250 MHz	766	448.6875 MHz
467	433.7500 MHz	767	448.7000 MHz
468	433.7750 MHz	768	448.7125 MHz

5. SYSTEM SETTTINGS

5.1 Receiver LCD Function Settings

(Fig. 15) Receiver LCD Displays

5.2 LCD Display Descriptions:

Pushbutton 1 page change: Page $1 \rightarrow$ Page $2 \rightarrow$ Page $3 \rightarrow$ Page $4 \rightarrow$ Page $5 \rightarrow$ Page $6 \rightarrow$
Page $1 \rightarrow$ \qquad
Pushbutton 2 page change: Page $1 \rightarrow$ Page $6 \rightarrow$ Page $5 \rightarrow$ Page $4 \rightarrow$ Page $3 \rightarrow$ Page $2 \rightarrow$
Page $1 \rightarrow$ \qquad
Pushbutton 3: Reserved.

1) When the receiver power is $O N$, the initial display on LCD is " $\alpha 6000$ decoder loading.....".
2) When internal interface is connected correctly, the first LCD display would be "pagel".

Line 1:

(1) $\alpha 6000 \rightarrow$ System Type
(2) $\mathrm{CH}: 401 \rightarrow 1^{\text {st }}$ code is frequency band code, the $2^{\text {nd }}$ and $3^{\text {rd }}$ is for channel $01 \sim 68$.

BAND CODE	FREQUENCY BAND
4	433 MHz
7	447 MHz

(3) T_Signal strength, 5 sections in total. Full 5 -section is for the strongest signal and empty 5 -section is for the weakest signal.

Line 2:

(4) EID:0000 $\rightarrow 4$ bits (4 bits/binary), after AUTOSCAN EID function enable.

For receiver ID comparison.
(5) ID: $12345 \rightarrow$ ID for receiver comparison, 5 bits (20 bits/ Hexadecimal)

Line 3:
(6) MRly OFF \rightarrow MAIN relay deactivated

MRly ON \rightarrow MAIN relay activated

Line 4: Message
(7) Search.... \rightarrow Searching transmitter ID

Scan>>>>>> \rightarrow AUTO channel searching
Work>>>>>> \rightarrow Functioning

Error Message	Description
Error:Eeprom ack	Decoder EEPROM read-out/write-in error
Error:Eeprom id	Decoder EEPROM ID setting error
Error:Eeprom crc	Decoder EEPROM data CRC error
Error:Relay > 32pcs	Decoder relay setting over 32pcs
Error:Rf usart	Decoder to RX module interface faulty
Error:Rf module	RX module faulty
Error:Com or 2803	Decoder relay power faulty
Error:Main relay	Decoder MAIN relay faulty
Error:V\&I card	Error on the voltage/current proportional output of interface card
Error:PWM card	Error on PWM proportional output interface card
Error:Watchdog	Faulty on watch-dog layout of decoder externals
Receiver voltage low	Decoder voltage is too low <10VDC
ID not match	Receiver with un-identical ID
Emergency Stop	Decoder receives stop command
Error:Main1 LOOP OUT	Main relay 1 control module faulty, LOOP OUT
Error:Main2 LOOP OUT	Main relay 2 control module faulty, LOOP OUT
Error:Main1 CAN LOSS	Main relay 1 control module faulty, CANBUS LOSS
Error:Main2 CAN LOSS	Main relay 2 control module faulty, CANBUS LOSS
$\begin{array}{\|l} \hline \text { Error:Main1 RF } \\ \text { LOSS } \\ \hline \end{array}$	Main relay 1 control module faulty, receiving RF module misses the signal
Error:Main2 RF LOSS	Main relay 2 control module faulty, receiving RF module misses the signal
Error:Main1 STOP	Main relay 1 control module faulty, STOP
Error:Main2 STOP	Main relay 2 control module faulty, STOP
Error:Main1 pre-on	Main relay 1 control module faulty, Pre-START overtime
Error:Main2 pre-on	Main relay 2 control module faulty, Pre-START overtime

3) Page 2: joystick/VR function display
(1) Signal strength, 5 sections in total. Full 5 -section is for the strongest signal, empty 5-section is for the weakest signal.
(2) Joystick or VR output

Line 1: J1:+10.0V J2:24.0mA
J 1 is for joystick 1 or VR1 output; J2 is for joystick 2 or VR2 output
Line 2: J3:-10.0V J4:00.0mA
J3 is for joystick 3 or VR3 output; J4 is for joystick 4 or VR4 output

Line 3: J5:0 STEP J6:5 STEP

J5 is for joystick 5 or VR5 output; J6 is for joystick 6 or VR6 output

Line 4: J7:NO USE J8:NO USE

J7 is for joystick 7 or VR7 output; J8 is for joystick 8 or VR8 output

Remark: Joystick, VR proportional voltage or current output is displayed as "calculated value", not "measured value" ${ }^{*}$) from output terminal. $(0 \sim+5 \mathrm{~V}, ~ 0 \sim \pm 5 \mathrm{~V}, ~ 0 \sim+10 \mathrm{~V}, ~ 0 \sim \pm 10 \mathrm{~V}, ~ 4 \sim 20 \mathrm{~mA}, ~ 0 \sim 20 \mathrm{~mA} \& 0 \sim 24 \mathrm{~mA}$. The approximate difference between LCD display value and output value is ± 0.2)
4) Page 3: Relay function display
(1) Signal strength, 5 sections in total. Full 5-section is for the strongest signal and empty 5-section is for the weakest signal.
(2) Relay output

Line 1: P1: 010203 -- -- -- -- 08
P1 is to relay module card I. P1: In sequence to relay $\mathrm{K} 01 \sim \mathrm{~K} 08$.
"01" is K01 RELAY ON, "--" is K01 RELAY OFF, " "(empty) is K01 RELAY not in use.
" 08 " is K08 RELAY ON , "--" is K08 RELAY OFF, " "(empty) is K08 RELAY not in use.
Line 2: P2: 09 -- -- -- -- -- -- 16
P2 is to relay module card II. P2: In sequence to relay K09~K016 " 09 " is K01 RELAY ON, "--" is K09 RELAY OFF, " "(empty) is K09 RELAY not in use.
" 16 " is K16 RELAY ON , "--" is K16 RELAY OFF, " "(empty) is K16 RELAY not in use.

Line 3: P3: 17 -- -- -- -- -- -- 24

P3 is to relay module card III. P3: In sequence to relay K17 ~ K24
" 17 " is K17 RELAY ON, "--" is K17 RELAY OFF, " "(empty) is K17 RELAY not in use.
" 24 " is K24 RELAY ON , "--" is K24 RELAY OFF, " "(empty) is K24 RELAY not in use.

Line 4: P4: 25 -- -- -- -- -- -- 32
P4 is to relay module card IV. P4: In sequence to relay K25 ~ K32 " 25 " is K25 RELAY ON, "--" is K25 RELAY OFF, " "(empty) is K25 RELAY not in use.
" 32 " is K32 RELAY ON , "--" is K32 RELAY OFF, " "(empty) is K32 RELAY not in use.
5) Page 4: External extension relay function display
(1) Signal strength, 5 sections in total. Full 5 -section is for the strongest signal and empty 5 -section is for the weakest signal.
(2) External extension relay output

Line 1: E1: 010203 -- -- -- -- 08
E1 is in the CN7 slot of external extension system, relay module card I.

E1: In sequence to external relay $\mathrm{K} 01 \sim \mathrm{~K} 08$
"01" is external K01 RELAY ON , "--" is external K01 RELAY OFF, " " (empty) is external K01 RELAY not in use
" 08 " is external K08 RELAY ON , "--" is external K08 RELAY OFF, " " (empty) is external K08 RELAY not in use

Line 2: E2: 09 -- -- -- -- -- -- 16
E2 is in the CN8 slot of external extension system, relay module card II.

E2: In sequence to external relay K09~K16
" 09 " is external K09 RELAY ON , "--" is external K09 RELAY OFF, "" (empty) is external K09 RELAY not in use
" 16 " is external K16 RELAY ON , "--" is external K16 RELAY OFF, " "(empty) is external K16 RELAY not in use

Line 3: E3: 17 -- -- -- -- -- -- 24
E3 is in the CN9 slot of external extension system, relay module card III.

E3: In sequence to external relay K17~K24
" 17 " is external K17 RELAY ON , "--" is external K17 RELAY OFF, " "(empty) is external K17 RELAY not in use
" 24 " is external K24 RELAY ON , "--" is external K24 RELAY OFF, " " (empty) is external K24 RELAY not in use

Line 4: E4: 25 -- -- -- -- -- -- 32
E4 is in the CN10 slot of external extension system, relay module card IV.

E1: In sequence to external relay K25 ~ K32
" 25 " is external K25 RELAY ON , "--" is external K25 RELAY OFF, " " (empty) is external K25 RELAY not in use
" 32 " is external K32 RELAY ON , "--" is external K32 RELAY OFF, " " (empty) is external K32 RELAY not in use
6) Page 5: Joystick/VR setting display

Line 1: J1:+-10V J2:0~24mA
J1: joystick 1 or VR1 output setting; J2: joystick 2 or VR2 output setting

Line 2: J3:+-10V J4:0~24mA

J3: joystick 3 or VR3 output setting; J4: joystick 4 or VR4 output setting

Line 3: J5:5STEP I J6:5STEP I

J5: joystick 5 or VR5 output setting; J6: joystick 6 or VR6 output setting
Line 4: J7: Not in use; J8: Not in use.
J7: joystick 7 or VR7 output setting; J8: joystick 8 or VR8 output setting

DISPLAY	OUTPUT SETTING
NO USE	Not in use
$0 \sim+5 \mathrm{v}$	$0 \sim+5 \mathrm{~V}$
$0 \sim+10 \mathrm{v}$	$0 \sim+10 \mathrm{~V}$
+-5 v	$0 \sim \pm 5 \mathrm{v}$
+-10 v	$0 \sim \pm 10 \mathrm{v}$
$4 \sim 20 \mathrm{~mA}$	$4 \sim 20 \mathrm{~mA}$
$0 \sim 20 \mathrm{~mA}$	$0 \sim 20 \mathrm{~mA}$
$0 \sim 24 \mathrm{~mA}$	$0 \sim 24 \mathrm{~mA}$
OPTIONAL	OPTIONAL
1STEP I	Single speed joystick.
2STEP I	Double-speed joystick, not to share the 2-speed relay.
2STEPs I	Double-speed joystick, not to share the 2-speed relay. $\quad 1 \& 2-$ speed relay do not activate at the same time.
3STEP I	3-speed joystick, share the 2-speed and above relay.
4STEP I	4-speed joystick, share the 2-speed and above relay.
5STEP I	5-speed joystick, share the 2-speed and above relay.
1STEP E	External extension single-speed joystick

2STEP E	External extension double-speed joystick, not to share the 2-speed relay
2STEPs E	External extension double-speed joystick, not to share the 2-speed relay. 1 \& 2-speed relay do not activate at the same time.
3STEP E	External extension three-speed joystick, share the 2-speed and above relay..
4STEP E	External extension four-speed joystick, share the 2-speed and above relay..
5STEP E	External extension five-speed joystick, share the 2-speed and above relay.

7) Page 6: Message

Line 1: Type: $\alpha 6000$
Line 2: Decoder ver:00.06
Decoder MCU firmware version
Line 3: Serial:00000001
Serial number
Line 4: Mfg.Date:2013/1/23
Manufacturing date

6. RECEIVER STATUS LIGHT AND
 INSTALLATION

6.1 Receiver Status Light

1. Power LED Display
2. Signal LED Display
3. Status LED Display
4. MAIN relay LED Display

6.2 Receiver LED Status
(Fig. 16) Receiver Status Light

ITEM	CONDITION	REASON	STATUS LED DISPLAY	REMARK
1	Power ON, voltage abnormal	Voltage > 15V or voltage <10.5	Red LED ON_0.1/OFF_0.1	All output off
2	High Voltage	Voltage > 16V	Red LED ON, green LED ON	
3	System START error display	External watchdog abnormal	Red LED ON_0.1/OFF_0.3sec with 8 8 blinks, OFF_0.8sec	All output off
4	Low Voltage	Voltage <10V	Red LED OFF, green LED OFF	All output off
5	EEPROM invalid	EEPROM data write-in failed or data error. (ID, CRC, ...)	Red LED ON_0.1/OFF_0.3sec with 7 7 blinks, OFF_0.8sec	All output off

6	RELAY setting error	Internal RELAY > 32PCS	Red LED ON_0.1/OFF_0.3sec with 5 blinks, OFF_0.8sec	All output off
7	START system display error	COM or 2803 feedback check abnormal	Red LED ON_0.1/OFF_0.3sec with 8 blinks, OFF_ 0.8 sec	All output off
8	RX module invalid	TX module faulty is detected by decoder	Red LED ON_0.1/OFF_0.3sec with 4 blinks, OFF_0.8sec	All output off
9	MAIN RELAY jammed	MAIN relay check NG	Red LED ON_0.1/OFF_0.3sec with 3 blinks, OFF_0.8sec	All output off
10	Faulty on interface connection	Faulty on voltage, current, proportional output interface card, PWM proportional output interface card or outer extension relay module	Red LED ON_0.1/OFF_0.3sec with 6 blinks, OFF_0.8sec	All output off
11	ID error	ID error	Red LED ON_0.1/OFF_0.3sec with 2 blinks, OFF_0.8sec	Standby status
12	Delay on AUTOSCAN slave channel locking	AUTOSCAN slave CH lock delay	Green LED ON	Standby status
13	Abnormal STARTUP status	MAIN RELAY is not activated. START and emergency stop commands are sending at the same time.	Red LED ON_0.1sec, green LED ON_0.1sec blink	Standby status
14	Function normally	MAIN RELAY is activated, ID is correct \& SQ light has to be ON	Whenever correct transmitter ID code is received, Green LED ON_0.05sec	Standby status
15	STANDBY (working but without receiving signal)	DATA shown as noise or DC	Green LED ON_0.1sec, OFF_0.8sec blink	Standby status

MAIN Relay module board

ITEM	CONDITION	REASON	GREEN STATUS LED DISPLAY
1	Connection failure	CAN BUS receiving error	No light displayed
2	Decoder board status error	Decoder status error	Green LED continuous ON
3	Normal operation	Normal operation	ON_0.1sec, OFF_0.1sec blink

6.3 Preparation

1. Required Tools:
(6) Self Drill $\varphi 10.5 \mathrm{~mm} \sim \varphi 11 \mathrm{~mm}$
(1) Flat Head Screwdriver (-)
(2) 5 mm Wrench
(7) Needle-nose pliers
(3) Multi-Meters
(8) Diagonal pliers
(4) 14 mm Box Wrench or Socket Wrench
(9) Wiring Cable(cord between $14 \mathrm{~mm} \sim 18 \mathrm{~mm}$) and Materials
2. Ensure receiver is not set to the same frequency channel and ID code as any other units in use at the same facility or within distance of 300 meters.
3. Prior to installation, make sure that the crane system itself is working properly.
4. Use the multi-meter to check the voltage source available and ensure receiver voltage setting is correct for this voltage.
5. Prior to installation, switch off the main power source to the equipment.

6.4 Steps-By-Steps Installation

1. Be sure to put a stopper in the cable gland not in use after wiring is completed.
2. Select a suitable location that is far from high voltage wiring or equipment, such as motor, relay...etc., to mount the receiver.
3. As much as possible, the location selected should have the antenna visible from all areas where the transmitter is to be used.
4. The location selected should not be exposed to high levels of electrical noise.

(Fig. 17) Receiver Installation
5. Ensure the selected location has adequate space to accommodate the receiver enclosure.
6. The distance between the antenna and the control panel should be as far apart as possible.
7. The use of an external axial cable to move the receiving antenna to the position for better signal receipt where it is necessary.
8. Drill four holes on the control panel (11mm).
9. Tightened all screws provided.
10. For system wiring, please refer to the wiring diagram located on the last page of this manual and on the backside of the receiver cover plate.
11. Ensure all wiring is correct and safely secured and all screws are fastened.
12. The power cable has to be connected to the AC position of power terminal block; the ground wire has to be connected to the GND position (crane metal frame) or to the screw fixing hole of ground wire on the receiver.
13. Please refer to below figures. To open the metal cover, unscrew the power module cover as positioned.

6.5 Wiring Diagram

Please refer to the wiring diagram located on the last page of this manual and on the backside of the receiver cover plate.

6.6 System Testing

1. Connect the power source to the receiver and test the operation of each function to ensure it operates in the same manner as the pendant controller.
2. Ensure the MAIN contact relay can be properly controlled by the remote control.
3. Ensure the limit switches on the crane that limit all travels are working properly.
4. Ensure the pendant controller is located in a safe location where it would not interfere with remote operation.

7. OPERATING INSTRUCTION

7.1 Power "ON" the System

1. Insert the transmitter power key into the key-switch slot located on the right side of the transmitter belly box.
2. Push the transmitter power key inward and then rotate it clockwise to " 1 " position.
" 1 " \rightarrow "ON" "0" \rightarrow "OFF"
3. To activate the system, first turn the EMS button clockwise so that the red button pops up. To activate the function "When transmitter power is turned on, emergency stop button is compelled to press \& release check": Press emergency stop button and release.
4. Press the START pushbutton to activate MAIN relay and the transmitter starts to send signals.
5. After 5 minutes of inactivity, that is 5 minutes after the last pushbutton is released, the green light
will disappear thus temporarily deactivating the transmitter power and the receiver MAIN.
Pressing START pushbutton thereafter will close the receiver MAIN and start the timing sequence over again.
6. If any function, such as the frequency channel of the transmitter unit is altered via simple dip-switch setting inside the transmitter (refer to page 13), you must then also change the frequency RF channel in the receiver (refer to page $15 \sim 16$). If the "auto-scanning feature" on the receiver is activated, you must then press and hold the START pushbutton after turning "on" the transmitter power in order for the auto-scanning receiver to identify the newly selected channel and then you may release the START pushbutton to operate.

7.2 Transmitter System Status Displays

7.2.1 Transmitter LED Display

(1) Battery Power LED Display: High power \rightarrow green LED on; Low power \rightarrow red LED on.
(2) Transmitter Status LED Display: Normal status \rightarrow green LED on; Abnormal status \rightarrow red LED on.

7.2.2 Transmitter LED Status Table

Encoder-Power Status LED Display (dual colors)

ITEM	STATUS	CONDITION	LED STATUS
1	Low voltage power on	Full current, power <6.0V	Red LED steady ON
2	Low voltage during operation (3)	Power < 5.1V	Red LED constant ON
3	Low voltage during operation (2)	Power > 5.1V < 5.5V	Red LED ON_0.1.OFF_0.1sec until power_off
4	Low voltage during operation (1)	Power > 5.5V <6.0V	Red LED ON_0.1.OFF_0.9sec until power off
5	Joystick correction mode	Enter joystick correction	Orange LED ON (red and green LED steady ON)
6	Emergency stop button is not pressed	Checking the press \& release function of emergency stop button when emergency stop button is not pressed.	Green ON_0.1sec, OFF_0.9sec blink
7	Normal operation	Power >6.0V	Green LED ON

Encoder-Status LED Display (dual colors)

ITEM	STATUS	CONDITION	LED STATUS
1	Low mid-voltage	Power < 6.0V	All LED status lights off
2	System error	Failed on external Watchdog wiring check or ADC reference voltage error	Red LED ON_0.1/OFF_0.3sec with 8 blinks, OFF_0.8sec
3	Check pushbuttons, increase resistance value	Pushbutton and increase resistance value error	Red LED ON_0.1/OFF_0.3sec with 6 blinks,OFF_0.8sec
4	EEPROM error	EEPROM data read out / write in error or data error (ID, CRC, ...)	Red LED ON_0.1/OFF_0.3sec with 7 blinks,OFF_0.8sec
5	Pushbutton jammed or joystick is not in the neutral position	Power ON when some of the pushbuttons are activated	Red LED ON_0.1/OFF_0.3sec with 2 blinks,OFF_0.8sec
6	Joystick correction has never been proceeded	Joystick correction has to be done to those joysticks with settings	Red LED ON_0.1/OFF_0.3sec with 3 blinks,OFF_0.8sec
7	Joystick correction error	Joystick correction over time or step incorrect.	Red LED ON_0.1/OFF_0.3sec with 5 blinks,OFF_0.8sec
8	Joystick correction completed	Enter joystick correction completed	$\begin{aligned} & \text { Orange (red + green) LED } \\ & \text { ON_0.5sec/OFF_0.5sec blink } \end{aligned}$
9	TX module invalid	TX module error is detected by the encoder	Red LED ON_0.1/OFF_0.3sec with 4 blinks,OFF 0.8 sec
10	Drop or tilt protection	Protection to the transmitter which is dropped or tilt.	Red LED ON_0.2/OFF_0.2sec blink
11	Re-awake status after sleep mode: pushbutton jammed or joystick is not in the neutral position	Re-awake after sleep mode: depress START button, joystick is not in the neutral position or pushbutton jammed	Red LED ON_0.05/OFF_0.05sec blink
12	STOP button is not pressed	During e-stop button press / release check, e-stop button is not pressed	All status lights off
13	Enter STOP	Press emergency stop button	All status LEDs are OFF
14	Normal power_on	Normal voltage and some of the pushbuttons are not pressed	Green LED ON 2sec and OFF
15	Transmitter in operation	TX board signal intermittent or continue to send signals	$\begin{aligned} & \text { Green LED ON_0.1sec, OFF_0.1sec } \\ & \text { blink } \end{aligned}$
16	Transmitter standby	Without stopping or continue to send signals	Green LED ON_0.1sec, OFF_0.9sec

7.3 Joystick Correction

7.3.1 Reasons for Joystick Correction

The assembly / change of new joystick, increasing deviation after long-term operation or joystick output non-proportional. (Not caused by settings)

7.3.2 Enter Joystick Correction Mode

Before joystick correction is proceeding, please first rotate transmitter power key to OFF position.
Dip-switch S2 on transmitter has to be set as 100000. (see below figure) After the setting of joystick correction is done, rotate the power key to ON position. The power LED will display in orange (red and
green lights are ON at the same time), and the status LED will display in green quick blinks then the transmitter enters joystick correction mode.

7.3.3 Joystick Correction Steps

Proportional joystick:

1. Select either joystick and operate it slowly. Then the buzzer will beep once briefly which means the joystick axis direction catches the start position.
2. Continue to operate the joystick swiftly to the end and hold. Then the buzzer will beep twice briefly which means the joystick axis direction catches the end position. The directional axis correction is now completed and joystick may back to neutral position.
3. Repeat step $1 \& 2$ to correct the reverse directional axis of the joystick.
4. Repeat step $1 \sim 3$ to complete all joysticks correction. After the joystick correction is completed, the buzzer will have a long beep once and then the joystick status LED blinks in orange slowly.
5. When status LED display becomes orange blinking slowly, then setting is completed. Please refer to 8.3.4 for exiting from correction mode.

Digital joystick 1~5 speeds:

1. Select either joystick, operate it to the $1^{\text {st }}$ speed position and hold. Then press START button and the buzzer will beep once briefly. Release START button and the joystick axis direction catches the $1^{\text {st }}$ speed position.
2. Locate the $2^{\text {nd }} \sim 5^{\text {th }}$ speeds directional axis by following step 1. Then operate the joystick back to the neutral position after the correction is completed.
3. Repeat step $1 \& 2$ to correct the reverse directional axis of the joystick.
4. Repeat step $1 \sim 3$ to complete all joysticks correction. After the joystick correction is completed, the buzzer will have a long beep once and then the joystick status LED blinks in orange slowly.
5. When status LED display becomes orange blinking slowly, then setting is completed. Please refer to 8.3.4 for exiting from correction mode.

7.3.4 Exit

After all joystick correction is completed, rotate the transmitter power switch to OFF position and set dip-switch S2 as 000000 as shown on below figure, then all joysticks exit the correction mode and back to normal operation.

S2

Note:
(1) Please do not proceed with joystick correction when voltage is low. When voltage is low, please rotate power key switch to OFF position and replace battery.
(2) Joystick correction has to be proceeded by following joystick axis sequence, otherwise joystick correction cannot be continued and status LED display will also show as orange fast blinking light. If transmitter is available with both digital and proportional joysticks, please correct the joysticks by following correction steps for digital and proportional joystick respectively.
(3) Under "Correction Standby" condition, if no joystick is operated for more than 30 seconds, buzzer for joystick correction overtime will have one long beep for warning. Status LED display will also show as red LED ON_0.1sec/OFF_0.3sec with 5 blinks and OFF_0.8sec, then correction will be discontinued. There is no sequence request for joystick correction. After long as correction for all joysticks is completed, the status LED will continue to blink slowly in orange.
(4) Under "Correction" condition, if the joystick axis is not changed for more than 30 seconds or if the joystick is back to neutral position, buzzer for joystick correction overtime will have one long beep for warning. Status LED display will also show as red LED ON_0.1sec/OFF_0.3sec with 5 blinks and OFF_0.8sec, then correction will be discontinued. During joystick correction, if status LED blinks in red for 5 times (please refer to "Encoder status LED display") and there will have long beep on the buzzer, then the correction is failed. In this case, please shutoff the power and start the correction again.
(5) Under " 2 nd step Correction" condition, only the maximum joystick axis value will be recorded. No timing will be over 30 seconds. During the 2 nd step correction, please operate the joystick forward smoothly. Do not shake the joystick or operate the joystick backward, otherwise the joystick correction cannot be completed. Under "Correction Mode condition", the power status LED displays in orange and the correction has to be completed in 3 minutes. If not, the status LED blinks in red for 5 times (please refer to "Encoder status LED display") and there will have long beep on the buzzer, then the correction is failed. In this case, please shutoff the power and start the correction again.
(6) Under "Correction Standby" condition, if the joystick axis buzzer has three beeps, that means the joystick has been operated forward over half way. Please keep on operating the joystick forward to the axis end for correction.

7.3.5 Function Change Settings

1. One end of the Alpha 6000 USB programming cable connects to computer, the other end connects to encoder board inside transmitter as shown below. (Remove the Power Key first)

(Fig. 20)
2. Install Alpha 6000 software and click open. (Alpha6K.exe for windows XP /Alpha6K_W64.exe for windows 7).
3. Select "Read Memory".
4. After memory data is read successfully, then enter function change setting display.
5. After function setting is completed, change the display to the last page to continue setting. Select "Write-in Memory (ROM)" to download the setting data to the transmitter.
6. After transmitter setting data is downloaded completely, remove Alpha 6000 programmer USB plug from encoder board and then plug it into decoder board as shown below. (The system has to be first shutoff.)

(Fig. 21)
7. Click "Write-in Memory (ROM)", then the setting data will be downloaded to receiver and the setting is completed.

8. BATTERY CHARGING

1. Plug in the power cord and the power indicator will light up.
2. When a battery pack is inserted, the green charging light will blink to indicate charging is taking place at the current moment.
3. If discharging of battery pack is desired, press the "DISCHARGE" button. At discharging mode, the green blinking light will now turned into a constant red light indicating that the battery pack is now being discharged. If you want to cancel the discharge, just press "DISCHARGE" button again
4. When discharging is completed, the charger will automatically switch to the charging mode where the green blinking light will reappear again
5. The charging time is approximately $3 \sim 6$ hours.
6. When charging is completed, a constant green light will appear to indicate that the battery pack is fully charged.
7. When the battery pack is at 90% charged state, trickle charging will take over to ensure the longevity of the battery pack and as well as to ensure the battery pack is 100% charged
8. When the battery pack's temperature exceeds $50^{\circ} \mathrm{C}$, the charger will go into protective mode and charging will be discontinued
9. To prolong the life of the battery pack, it is recommended that the battery pack be fully discharged prior to every re-charging.

9. TROUBLE SHOOTING

Should the operator find the equipment not operating normally, please check the chart below for simple trouble shooting tips.

POSSIBLE REASON	PROBLEM JUDGEMENT	SOLUTION
Crane malfunctioned	Try to operate the crane by a pendent. If it is working, then the problem is on the crane itself.	Repair the crane
1. Transmitter power is not on. 2. Transmitter battery voltage is low.	1. Both battery and status LED not lit. 2. Turn "on" the transmitter with EMS elevated. Battery status LED red light constantly on.	1. Turn on the power 2. Replace the recharg e-able battery.
No power to the receiver (AC power indicator on the receiver unit not lit).	Check if the power indicator (AC) is lighted	Ensure power input to the receiver unit is correct.
Blown fuse	Check if the fuse has blown	Replace the Fuse.
Transmitter startup, pushbutton/joystick jammed	Under pushbutton jammed condition: First check which pushbutton/joystick is jammed. [Status LED] Red fast blinks: Without jammed Red blinks twice: Jammed Description: Under pushbutton jammed condition: [Status LED] two red blinks. After all pushbuttons and joysticks are released, move joystick 1. If [Status LED] red blinks quickly, it means joystick 1 is not jammed. If red LED blinks twice, it means joystick 1 is jammed. Please check all joysticks by following above descriptions. * Enable pushbutton [power startup without checking pushbutton jammed] checking bypass. * [Standard selector switch] [Mixed mode selector switch][Speed limit switch] [EID/LID switch] checking bypass.	Replace/repair, pushbutton/joystick

10. SYSTEM SPECIFICATION

Transmitter Unit

Frequency Range	:	PLL $433 \sim 434 \mathrm{MHz} / 447 \sim 448 \mathrm{MHz}$
Transmitting Range:	.	over 100 Meters
Continuous Operating Time	:	$28+$ Hours (2000mAh)
Operating Current	:	approx. 70 mA
Sleep Mode Current	.	approx. 10 mA
Charging Current	:	approx. 400 mA
Security ID Code	:	1,048,576 sets (20 bit)
Shortest Pushbutton Recognizing Time	:	5 mS
Channel Spacing	:	$25 \mathrm{KHz} / 12.5 \mathrm{KHz}$
Frequency Control	:	VTCXO + Synthesizer (PLL)
Frequency Drift	:	<3ppm@ - $10^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$
Frequency Deviation	:	< $1 \mathrm{ppm} @ 25^{\circ} \mathrm{C}$
Spurious Emission	:	$>60 \mathrm{dBc}$
Transmitting Power	:	1.0 mW
Emission	:	F1D
Antenna Impedance	:	50 ohms
Encoding Reference	:	2FSK
Encoding Depth	:	+-2.5KHZ
Enclosure Rating	:	IP-65
Source Voltage	:	7.2 V (2000mAH NiMH battery pack)
Operating Temperature	:	$-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$
Shock Resistant	:	50G
Dimension	:	268 mm X 162 mm X 178.5 mm
Weight	:	1,600g (with 2000mAh battery pack)

Receiver Unit

Frequency Range	$:$	PLL $433 \sim 434 \mathrm{MHz} / 447 \sim 448 \mathrm{MHz}$
Channel Spacing	$:$	$25 \mathrm{KHz} / 12.5 \mathrm{KHz}$
Hamming Distance	$:$	$\geqq 6$
Frequency Control	$:$	$\mathrm{VTCXO}+$ Synthesizer (PLL)
Frequency Drift	$:$	$<3 \mathrm{ppm} @-10^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$
Frequency Deviation	$:$	$<1 \mathrm{ppm} @ 25^{\circ} \mathrm{C}$
Sensitivity	$:$	$\leq-120 \mathrm{dBm}$
Decoding Reference	$:$	2 FSK
Intermediate Frequency	$:$	21.4 MHZ and 455 MHZ
Antenna Impedance	$:$	50 ohms
Data Decoder Reference	$:$	Quartz Crystals
Radiation Leakage	$:$	$<-75 \mathrm{dBm}$
Proportional Voltage Output Impedance $:$	$\geq 1 \mathrm{k} \Omega$	
Proportional Current Output Impedance $:$	$\geq 250 \Omega$	
Responding Time	$:$	$45 \mathrm{mS} \sim 150 \mathrm{mS}$
(pushbutton / EMS / joystick)		
MAIN off Time after RF Signal Interruption $:$	Approx .1 second	
Enclosure Rating	$:$	$\mathrm{IP}-65$
Source Voltage	$:$	$100-240 \mathrm{VAC} @ 50 / 60 \mathrm{~Hz}$.
Power Consumption	$:$	32 W
Operating Temperature	$:$	$-10^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
Shock Resistant	$:$	40 G
Output Contact Rating	$:$	$250 \mathrm{~V} @ 6 \mathrm{~A}$
Dimension	$:$	300 mm X 171 mm X 115 mm
Weight	$:$	$4,500 \mathrm{~g}$ (include the cable gland)

[^0]
11. PARTS LIST

1. TX module

TX6000
2. RX module card

RX6000
3. Proportional output module
4. Wiring loom

POM6000
5. Encoder board

WL6000
6. Decoder card EN6000

Decoder card (infrared)
DE6000
DEIR6000
7. LCD display card

LCD6000
8. Relay card (8R)

RL6008
9. A/G sensor board AG6000
10. Power supply module ($100 \sim 240 \mathrm{VAC}$) PS6000
Power supply module ($380 \sim 460$ VAC) PS6001
Power supply module ($12 \sim 24 \mathrm{VDC}$) PS6002
11. Small single axis joystick unit (complete)
proportional
JOY-600
1/2 speeds / steps (digital)
JOY-602
3 speeds / steps (digital) JOY-603
4 speeds / steps (digital) JOY-604
5 speeds / steps (digital/proportional) JOY-605
12. Single axis joystick unit (complete)
proportional JOY-610
$1 / 2$ speeds / steps (digital) JOY-612
3 speeds / steps (digital) JOY-613
4 speeds / steps (digital) JOY-614
5 speeds / steps (digital/proportional) JOY-615
13. Double axis joystick unit (complete)
proportional
JOY-620
$1 / 2$ speeds / steps (digital) JOY-622
3 speeds / steps (digital) JOY-623
4 speeds / steps (digital) JOY-624
5 speeds / steps (digital/proportional) JOY-625
14. Joystick rubber boot JOYRB5000
15. Joystick head
16. 1-step pushbutton (side panel)

JOYH5000
17. 1-step pushbutton (top panel)

PB-1S
18. 2-stage selector switch

PB-1T
19. 3-stage selector switch

SW-2T
20. 2-stage toggle switch

SW-3T
21. 3-stage toggle switch

TW-2T
22. Emergency stop button
23. Transmitter casing (complete)

TC6000
24. Transmitter protective guardrail + hardware

PG5000
25. Transmitter power key

PW5000
26. 2000mAh NiMH battery pack

BAT2000
27. Receiver antenna (419/433/447 MHz)

ANT433
28. Receiver upper enclosure

RCU6000
Receiver bottom enclosure
RCB6000
Receiver enclosure (complete)
RC6000
29. Regular relay 12VDC

RR6000_12VDC
30. Safety relay 12 VDC

SR6000_12VDC
31. Receiver shock absorber ($4 \mathrm{pcs} /$ set)

SA4000
32. Intelligent charger (please specify voltage) CH5000
33. Waist belt WB5000
34. Shoulder strap SS5000
35. Cable gland CG4000
36. Labels for top pushbuttons

TPBL5000
37. Labels for side pushbuttons SPBL5000
38. Joystick gates

GA5000

[^0]: Note: Other types of source voltages are available upon request.

